Introduction
Electric vehicles (EVs) have revolutionized the automotive industry, offering an environmentally friendly alternative to traditional internal combustion engine (ICE) vehicles. While EVs have fewer moving parts and require less maintenance, their battery is a critical and costly component, accounting for up to 25% of the vehicle’s overall cost. Given its importance, extending the lifespan of an EV battery is vital for maintaining the car’s value, range, and long-term functionality.
This guide will explore the factors that influence EV battery degradation, why battery capacity matters, and practical strategies to maximize your EV battery longevity.
Why is EV battery longevity Important?
The efficiency and real-world range of an electric vehicle are affected by its battery capacity, which is expressed in kilowatt-hours (kWh). The majority of EV batteries have a kWh value between 30 and 100, with a higher kWh rating indicating a greater driving range. The Tesla Model S, for example, has larger-capacity batteries that provide better performance and a longer range.
An EV battery longevity useful range and resale value are greatly impacted by the degree of battery capacity depreciation that occurs over time owing to a variety of circumstances. EV batteries typically lose 2.3% of their initial range every year. Batteries rarely fail suddenly, yet they may lose their capacity to hold a full charge.
Battery pack warranties, which usually range from 8 years or 100,000 miles, are provided by the majority of EV manufacturers. This warranty is extended to 150,000 miles by certain manufactures, such as Tesla, with a 70% battery capacity retention guarantee. To maximize the usefulness and effectiveness of your EV, it is essential to comprehend and maintain battery capacity.
Factors Affecting EV battery longevity
1. Time
EV batteries naturally deteriorate over time as a result of chemical conversations, just like any other battery. The battery’s cells decrease efficiency even while not in use, which impacts overall performance.
2. The temperature
The ideal operating temperature for lithium-ion batteries is room temperature. Degradation occurs more quickly when cells are exposed to extremes of heat or cold because these conditions speed up internal chemical reactions. When parked or in operation, prolonged exposure to extreme temperatures may significantly reduce battery life.
3. Charge Cycles
An EV battery goes through a charge cycle each time it is charged and drained. These cycles gradually reduce the battery’s capacity to retain a charge. This process becomes quicker by rapid charging because of the high energy intake and heat generation.
How EV battery longevity Work
Thousands of lithium-ion cells make up EV battery packs, which store energy to run the electric motor. When the car is plugged in, these cells are charged, and when it is in motion, they are discharged. The battery’s lifespan is impacted by the charging and discharging processes, with rapid charging adding to the stress.
Battery management systems are found in the majority of modern EVs to guard against overcharging, over discharging, and overheating. But in order to guarantee the best possible battery performance and longevity, owners must also follow best practices.
The Best Ways to Increase EV battery longevity
1. Reduce Your Exposure to High Temperatures
Avoid subjecting your EV to extremes of temperature while it is parked. A steady temperature can be maintained by parking in a garage or in the shade. The thermal management system can operate on grid power rather than depleting the battery when you plug it in while your car is parked.
2. Refrain from deep draining or fully charging the battery.
Your battery’s longevity can be greatly increased by maintaining a level between 20% and 80%. Although battery management mechanisms in contemporary EVs guard against overcharging, a reasonable charge range is still advised for best results.
3. Limit the Use of Fast Chargers
Despite their convenience, DC fast chargers put a lot of load on the battery and produce a lot of heat. Frequent use of quick charging can eventually cause the battery’s capacity to decrease. For everyday use, choose Level 2 chargers; save fast charging for urgent situations.
4. Maintain an Optimal State of Charge for Storage
Make sure the battery is charged to roughly 50% if you intend to leave your EV in storage for a long time. When left unused, a battery that is completely charged or discharged deteriorates more quickly. For extended periods of inactivity, certain EVs, such as the Tesla Roadster, have a “storage mode” that keeps the battery at its ideal level.
5. Drive Sensibly
Fast acceleration and forceful braking are examples of aggressive driving techniques that can quickly deplete the battery and produce extra heat. Battery life can be extended by keeping a constant pace and avoiding sudden acceleration and braking changes.
6. Avoid Nightly Charging to 100%
It is not required and may put stress on the battery to charge your EV to 100% every night. For everyday use, keep charging to 80% unless you require the entire range.
7. Follow the manufacturer’s guidelines.
Specific charging, operating, and maintenance guidelines can be found in your EV owner’s manual. Following the manufacturer’s guidelines assures optimal battery performance and avoids voiding warranties.
Advancements in EV battery longevity Technology
The EV sector is always developing to increase battery efficiency and longevity. Tesla, for example, is developing a “million-mile battery” that will live longer than the vehicle. Advances in battery chemistry, such as solid-state batteries, promise increased energy density, faster charging periods, and better thermal stability.
Modern EVs also have features such as liquid-cooled battery thermal management systems to keep operating temperatures at optimal levels. These innovations reduce degradation and improve overall performance, making electric vehicles more reliable and efficient than ever before.
The Economic and Environmental Impacts of EV battery longevity
EV battery longevity is not only financially profitable, but also environmentally responsible. Longer-lasting batteries require fewer replacements, saving EV owners money and reducing waste. Furthermore, enhanced battery performance increases vehicle efficiency, lowering the carbon footprint associated with energy usage.
With EV sales expected to exceed 60% of total passenger car sales by 2040, the need for sustainable and long-lasting battery solutions is greater than ever. By using the techniques listed above, EV owners may help to create a cleaner future while also maximizing their investment.
Conclusion
As the number of electric vehicles grows, understanding and implementing ways to improve battery life becomes increasingly crucial. EV owners can considerably extend the life of their batteries by limiting exposure to severe temperatures, avoiding quick charging, maintaining an ideal level of charge, and driving carefully.
Most EVs may travel over 200,000 miles on their original battery packs with proper maintenance and following manufacturer recommendations. As battery technology advances, the future of electric mobility seems more efficient, affordable, and sustainable.
Dorleco is dedicated to providing EV owners with the tools and knowledge they need to optimize their vehicles’ performance and lifetime. Discover more insights and solutions by exploring our VCU products, CAN Displays, CAN Keypads and EV software services.
Drive intelligently. Recharge responsibly. Increase the lifespan of your electric vehicle battery for a brighter tomorrow!